Naukowcy opracowali nową metodę poszukiwania fal grawitacyjnych

Ilustracja: pozostałość po Supernowej Tycho Brahego, obserwowana w zakresie rentgenowskim.  Credit: ROSAT, MPE, NASA
Ilustracja: pozostałość po Supernowej Tycho Brahego, obserwowana w zakresie rentgenowskim. Credit: ROSAT, MPE, NASA

Nową metodę poszukiwania fal grawitacyjnych emitowanych przez wybuchy supernowych typu Core Collapse (ang. Core-Collapse Supernova, CCSN) zaproponował międzynarodowy zespół naukowców. W jego składzie znalazł się badacz z Centrum Astronomicznego Mikołaja Kopernika PAN.

Opis nowej metody opublikowano w piśmie "Machine Learning Science and Technology" - poinformowano w czwartek na stronie internetowej CAMK PAN. Autorami publikacji, oprócz Filipa Morawskiego z tej instytucji, są naukowcy z Scuola Normale Superiore, Uniwersytetu Tor Vergata i Uniwersytetu Swinburne.

Jak wyjaśnia CAMK PAN, wybuchy CCSN należą do jednych z najbardziej spektakularnych zjawisk w naszym Wszechświecie.

"Są źródłem niektórych ciężkich pierwiastków istniejących obecnie. Co więcej, wybuchy te są tak potężne, iż można je zaobserwować nawet w trakcie dnia (gdy eksplozja nastąpiła w naszej galaktyce). Niestety CCSN są obiektem trudnym do zbadania. Przede wszystkim są niezwykle rzadkie - w Drodze Mlecznej zachodzą jedynie 2-3 wybuchy na stulecie" - czytamy w informacji CAMK PAN. Dodano, że obserwacje elektromagnetyczne dostarczają jedynie informacji o prekursorze wybuchu. Nie wystarcza to do wytłumaczenia procesu zachodzącego w centrum umierającej gwiazdy - zapaści rdzenia (ang. Core-Collapse), który odpowiada za rozpoczęcie sekwencji prowadzących do wybuchu.

"Ponieważ światło nie może przedostać się przez materię otaczającą gwiazdę, informacja o zapadającym się rdzeniu jest niedostępna dla obserwacji elektromagnetycznych. Nie dotyczy to jednak fal grawitacyjnych, które mogą się przedostać przez zewnętrzne warstwy gwiazdy nie ulegając rozproszeniu lub pochłonięciu. Detekcja tego typu sygnałów jest spodziewana w najbliższej przyszłości w detektorach LIGO i Virgo" - przypomniano w komunikacie.

Dlatego w wyniku projektu zaprezentowanego w najnowszej publikacji, badacze przeanalizowali najnowocześniejsze modele CCSN wygenerowane na podstawie symulacji hydrodynamicznych procesu zapadania się rdzenia gwiazdy napędzanego neutrinami. Dodano, że fale grawitacyjne otrzymane w ten sposób zostały następnie dodane do zasymulowanego niestacjonarnego szumu detektorów Virgo oraz Teleskopu Einsteina (planowany detektor fal grawitacyjnych).

"Nowością proponowanej metody poszukiwania sygnałów CCSN jest zastosowanie konwolucyjnej sieci neuronowej (CNN) w połączeniu z algorytmem poszukującym sygnałów w szumie o nazwie Wavelet Detection Filter (WDF). Ponadto autorzy po raz pierwszy w badaniach CCSN wykorzystujących uczenie maszynowe uwzględnili artefakty (ang. glitches) rejestrowane w detektorze, które mogą imitować sygnały astrofizyczne. Analiza ta pozwoliła na ocenę wiarygodności proponowanej metody pod kątem fałszywych alarmów wywołanych sygnałami pochodzenia nieastrofizycznego" - podkreślono.

PAP - Nauka w Polsce

szz/ ekr/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • Fot. Adobe Stock

    Scanway ma zamówienie od Intuitive Machines na dostarczenie instrumentu do obserwacji Księżyca

  • Fot. Adobe Stock

    W sobotę zacznie się astronomiczna zima

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera