W badaniu z udziałem kilku tysięcy kobiet, sztuczna inteligencja (SI) lepiej określała ryzyko zachorowania na raka piersi, niż pozwalają na to standardowe modele kliniczne. To szansa na spersonalizowaną opiekę dla każdej kobiety – twierdzą naukowcy.
Ryzyko zachorowania przez kobietę na raka piersi określa się z pomocą specjalnych modeli, które uwzględniają różnego rodzaju informacje o zdrowiu pacjentki, takie jak wiek, rodzinna historia związana z tą chorobą, urodzenia dzieci czy wyniki badań mammograficznych.
"Kliniczne modele ryzyka opierają się na informacjach gromadzonych z różnych źródeł, które nie zawsze są dostępne lub zebrane" – wyjaśnia dr Vignesh A. Arasu, radiolog z kalifornijskiego Kaiser Permanente (USA).
"Najnowsze postępy w dziedzinie uczenia maszynowego opartego na sztucznej inteligencji dają nam możliwość wyodrębnienia setek, a nawet tysięcy dodatkowych informacji z badań mammograficznych" - podkreśla ekspert.
Dr Arsau i jego zespół przeanalizował ponad 13 tys. mammograficznych zdjęć bez śladów nowotworów wykonanych w 2016 roku oraz 4,5 tys. zdjęć wykonanych u pacjentek, u których w ciągu 5 lat od bazowej obserwacji pojawił się nowotwór.
Wszystkie ochotniczki były obserwowane do 2021 roku.
"Wybraliśmy mammogramy przesiewowe wykonane w ciągu całego 2016 roku, dlatego nasza populacja badawcza jest reprezentatywna dla społeczności północnej Kalifornii" – podkreśla dr Arasu.
Naukowcy określili 5-letnie ryzyko zachorowania na raka z pomocą pięciu różnych systemów sztucznej inteligencji oraz standardowego, klinicznego modelu Breast Cancer Surveillance Consortium (BCSC).
"Wszystkie pięć algorytmów opartych na sztucznej inteligencji wykazało się lepszą skutecznością w przewidywaniu ryzyka raka piersi w okresie od 0 do 5 lat w porównaniu do modelu ryzyka BCSC" – informuje dr. Arasu.
"Ta silna zdolność predykcyjna na przestrzeni pięciu lat sugeruje, że SI identyfikuje zarówno pominięte przypadki raka, jak i cechy tkanki piersiowej, które pomagają przewidzieć przyszły rozwój nowotworu. Istnieje w mammogramach coś, co pozwala nam śledzić ryzyko raka piersi. To jest ta ‘czarna skrzynka’ SI" – mówi specjalista.
Niektóre algorytmy okazały się przy tym szczególnie skuteczne w przewidywaniu rozwoju agresywnych form raka.
Jeszcze lepsze wyniki uzyskano kolejnym sposobem – połączeniem analizy z pomocą SI oraz BCSC.
"Poszukujemy dokładnego, efektywnego i skalowalnego sposobu analizy ryzyka raka piersi u kobiet. Modele ryzyka oparte na mammografii i sztucznej inteligencji posiadają ważne, praktyczne zalety w porównaniu do tradycyjnych modeli klinicznych, ponieważ korzystają z jednego źródła danych: samego mammogramu" – mówi dr Arasu.
Badacz zwraca uwagę, że niektóre instytucje już wykorzystują sztuczną inteligencję do pomocy radiologom w wykrywaniu raka na mammografiach.
Ocena przyszłego ryzyka danej osoby, którą z pomocą SI można uzyskać w kilka sekund, mogłaby więc zostać zintegrowana z raportem radiologicznym udostępnionym pacjentowi i jego lekarzowi.
"Sztuczna inteligencja w przewidywaniu ryzyka raka daje nam możliwość spersonalizowania opieki nad każdą kobietą, do czego nie mamy obecnie dostępu na standardowych zasadach. To narzędzie mogłoby pomóc nam zapewnić spersonalizowaną, precyzyjną pomoc medyczną na państwowym poziomie” – twierdzi naukowiec.(PAP)
Marek Matacz
mat/ agt/
Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.