Poszukiwanie soczewkowanej grawitacyjnie poświaty rozbłysków gamma

Fot. Adobe Stock
Fot. Adobe Stock

Rozbłyski gamma to jedne z najbardziej energetycznych procesów zachodzących w najdalszych zakątkach Wszechświata. Od lat są w centrum zainteresowania astrofizyków. Naukowcy spodziewają się, że istnieje możliwość soczewkowania grawitacyjnego sygnałów pochodzących od takich zdarzeń. W poszukiwaniach potwierdzenia tych oczekiwań biorą udział naukowcy z NCBJ.

"Rozbłyski gamma (GRB, z ang. Gamma-Ray Burst) są obserwowane na całym niebie i są tak jasne, że sygnały od nich docierają z najodleglejszych zakątków Wszechświata. Właściwe zrozumienie kosmologicznego pochodzenia rozbłysków gamma oraz ich natury, zawdzięczamy Polakowi, profesorowi Bohdanowi Paczyńskiemu. Najdalsze obserwowane GRB mają przesunięcie ku czerwieni (z ang. redshift) ~10. Wynika z tego, że ich źródłami są obiekty, od których światło podróżowało do nas ponad 13 miliardów lat - przypomniano w komunikacie Narodowego Centrum Badań Jądrowych (NCBJ). - Ze względu na dużą odległość należy się spodziewać, że światło dochodzące do nas od wielu z nich może ulegać soczewkowaniu grawitacyjnemu wywołanemu przez bliższe nam galaktyki. Jednak poza jednym niedawnym przypadkiem opublikowanym w czasopiśmie Nature, nie zdołano jeszcze zaobserwować soczewkowanego GRB tylko i wyłącznie w oparciu o dane z zakresu gamma".

NCBJ dodaje, że od dawna sugerowano, że soczewkowanie grawitacyjne może powielać obrazy GRB. Obserwacje takich zjawisk mogłyby być wykorzystane między innymi do znaczącego polepszenia dokładności pomiarów parametrów kosmologicznych, takich jak stała Hubble'a, do badania fizyki fundamentalnej (testując prędkość ich propagacji w zależności od energii), oraz do uzyskania ograniczenia na obfitość ciemnej materii w postaci zwartych obiektów (czarne dziury, wystygłe: gwiazdy neutronowe lub białe karły).

Tradycyjne poszukiwania soczewkowanych GRB skupiają się na zakresie promieni gamma. Międzynarodowy zespół naukowców, w którym pracuje prof. Marek Biesiada z Zakładu Astrofizyki Narodowego Centrum Badań Jądrowych, proponuje, by poszukiwania takich zjawisk oprzeć nie tylko o dane gamma, ale też o wielozakresowe obserwacje poświaty rozbłysków (z ang. GRB afterglow).

„Problemów przy szukaniu soczewkowanych rozbłysków gamma jest kilka - wskazuje, cytowany w komunikacie prof. Marek Biesiada. - Po pierwsze, promieniowanie gamma emitowane jest w obszar dość wąskiego stożka – zatem musimy mieć więcej szczęścia, aby wzajemne ustawienie źródła i soczewki skutkowało obserwowalnymi wielokrotnymi obrazami. Po drugie, detektory gamma mają zbyt słabą rozdzielczość, aby zidentyfikować położenie tych wielokrotnych obrazów. Na szczęście sygnały z obrazów docierają do nas z pewnym opóźnieniem czasowym, czyli detektor powinien zarejestrować dwa sygnały o identycznym kształcie. Tu też tkwi pewien problem: opóźnienie czasowe musi być większe niż 1 sekunda, lecz krótsze niż 300 sekund. W innym przypadku nie mamy szans na odkrycie soczewkowania w detektorze promieni gamma".

Jak dodaje naukowiec, ograniczenie czasowe oznacza, że soczewkami mogą tu być obiekty o masach między 100 a 10 mln mas Słońca. "To zapewne musiałyby być egzotyczne obiekty, np. masywne czarne dziury o tzw. pośrednich masach, które wciąż są jedynie hipotetyczne. Na szczęście, rozbłyskom gamma towarzyszą znacznie dłużej trwające późniejsze poświaty: najpierw w promieniach X, następnie w świetle widzialnym i na falach radiowych. Co więcej, promieniowanie poświaty nie jest już skolimowane do wnętrza stożka. Mamy więc większe szanse na odkrycie układu soczewkowanego grawitacyjnie. Jest to pomysł, który jakiś czas temu zainspirował mnie i dr Aleksandrę Piórkowską-Kurpas z Uniwersytetu Śląskiego” - zauwża prof. Biesiada.

Korzystając ze standardowego modelu poświaty GRB, badacze określili, jak wyglądałyby dane obserwacyjne soczewkowanej poświaty błysków gamma. Analizy oparte zostały o dwa modele soczewek grawitacyjnych: model punktowy (opisujący gwiazdy lub czarne dziury) oraz model galaktyki (tzw. osobliwa izotermiczna sfera). "W takiej sytuacji poświata rentgenowska składałaby się z kilku rozbłysków o podobnym kształcie. Z kolei optyczna krzywa jasności poświaty mogłaby posiadać pojaśnienia na swej gałęzi opadającej, gdy jej blask nieuchronnie się zmniejsza. Symulacje numeryczne pozwoliły uzyskać przewidywane profile krzywych jasności poświat w zależności od masy soczewki i opóźnienia czasowego sygnałów" - opisano w komunikacie.

W oparciu o swoje analizy naukowcy sugerują, aby przyszłe poszukiwania soczewkowanych GRB oprzeć na dwóch przypadkach obiektów soczewkujących.

Pierwszym byłby zwarty obiekt, typu czarnej dziury o masie nie większej niż 10 mln mas Słońca. "Opóźnienie będzie wtedy niewielkie (~100 sekund lub mniejsze), a zwielokrotnione obrazy gamma mogą być rozdzielone lub nakładające się. Jeśli jednak sygnał opóźniony będzie słabszy niż czułość detektora, aparatura zarejestruje tylko jeden sygnał. W takim przypadku, można wykorzystać późniejsze obserwacje poświaty w zakresach rentgenowskim i optycznym, by ocenić, czy obraz jest soczewkowany, czy może obiekt miał kilka następujących po sobie emisji. Jeśli sygnał GRB jest faktycznie soczewkowany, wówczas poświata rentgenowska najprawdopodobniej zawierałaby kilka rentgenowskich flar o podobnym kształcie. W obrazie optycznym poświaty również powinniśmy zaobserwować pojaśnienia „górki” krzywej jasności" - wskazują badacze.

Drugim obiektem byłyby galaktyki o masie 1-100 mld mas Słońca. "W takim przypadku typowe opóźnienie będzie rzędu ~17 min – 28 h. Wobec tego w zakresie gamma niezmiernie trudno będzie wykryć soczewkowanie (o ile w ogóle będzie to możliwe). Natomiast w zakresie promieni X, światła widzialnego, czy fal radiowych powinny się ujawnić wyraźne flary (pojaśnienia) na tle słabnącej emisji poświaty. Takie zjawisko pozwoliłoby na łatwą weryfikację czy doszło do soczewkowania" - opisują naukowcy.

Według nich, biorąc pod uwagę, że teleskopy optyczne oraz radioteleskopy są zazwyczaj w stanie rozróżnić poszczególne obrazy zwielokrotnione, pozwoli to na weryfikację soczewkowania. "Jest to kolejny argument na rzecz rozwijania tzw. astronomii wielozakresowej (ang. multimessenger astronomy), co również jest domeną NCBJ" - podkreślono w komunikacid.

W ramach opisanych badań - podaje NCBJ - w archiwalnych danych naukowcy znaleźli potencjalnego kandydata soczewkowanego błysku gamma o katalogowej nazwie – GRB130831A. Opóźnienie czasowe było rzędu 500 sekund, co mieści się w zakresie omawianych sytuacji. Pewne detale tego zjawiska nie pozwalają jednak na stuprocentowe potwierdzenie postawionej hipotezy. Naukowcy nie poddają się i zapowiadają dalsze badania GRB 130831A. Tym samym żywią ogromne nadzieje, że dzięki wielozakresowym przeglądom nieba, w szczególności monitoringu całego nieba w zakresie gamma, znalezienie kolejnych soczewkowanych błysków gamma jest tylko kwestią czasu.

Publikację źródłową można znaleźć pod adresem: https://iopscience.iop.org/article/10.3847/1538-4357/ac31ad

PAP - Nauka w Polsce

agt/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • Fot. Adobe Stock

    Astronom: najbliższe tygodnie to dobry czas na obserwacje jasnych planet

  • Fot. Adobe Stock

    PIE: w 2024 r. rekordowa liczbę rakiet wynoszących satelity na orbitę

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera