Naukowcy z Politechniki Wrocławskiej zaproponowali nowe spojrzenie na zasady działania laserów półprzewodnikowych. Wyniki ich ważnego odkrycia z zakresu fizyki laserowej opublikowano właśnie w czasopiśmie „Nature Photonics”.
Pomysłodawcą badania jest dr hab. inż. Maciej Pieczarka z Wydziału Podstawowych Problemów Techniki, który wykonał swój przełomowy eksperyment w laboratoriach Politechniki Wrocławskiej wspólnie z doktorantką Aleksandrą Piasecką.
O badaniach z Nature Photonics poinformowali przedstawiciele PWr w przesłanym PAP komunikacie prasowym.
LASEROWY PRZEŁOM
“Swoje badania przeprowadziliśmy na urządzeniu praktycznie nieróżniącym się od tych stosowanych obecnie w przemyśle, np. w smartfonach, w telekomunikacji itd.” – mówi cytowany w komunikacie PWr dr Maciej Pieczarka. I dodaje: “Obserwacja kondensacji Bosego-Einsteina światła w takim urządzeniu jest kompletnie nowym spojrzeniem na zasady działania laserów półprzewodnikowych!”
Fragment płytki z urządzeniami laserowymi do przebadania. Źródło: Politechnika Wrocławska
Obecne zasady działania tych laserów polegają na tzw. osiągnięciu inwersji obsadzeń w obszarze aktywnym lasera, by światło uwięzione we wnęce lasera mogło być wzmocnione w procesie emisji wymuszonej. W akcji laserowej wzmocnione światło (fotony) mają tę samą fazę i długość fali, nadając charakterystycznych właściwości wiązce światła.
Nasi naukowcy w swoim projekcie wybrali laser o innym niż zazwyczaj zestrojeniu spektralnym między długością fali obszaru aktywnego a długością fali rezonatora laserowego.
“Co ciekawe, w przemyśle takiego zestrojenia zazwyczaj się unika, bo urządzenie ma nieco gorsze parametry pracy” – tłumaczy dr Maciej Pieczarka. W tych warunkach spontaniczna emisja i absorpcja w laserze spowodowała, że fotony w nim uwięzione ‘stermalizowały’, czyli zachowywały się jak gaz o zadanej temperaturze, który uwięziony jest w pudełku.
Zwiększając prąd zasilający, czyli zarazem liczbę fotonów w tym gazie, naukowcy z PWr spowodowali, że skondensowały one do modu lasera o najmniejszej energii, tzn. utworzyły kondensat Bosego-Einsteina w temperaturze pokojowej. A wszystko to w warunkach, kiedy w laserze nie ma inwersji obsadzeń.
“Jest to istotne z punktu widzenia fizyki, jak również aplikacji, ponieważ emisja z takiego kondensatu fotonów ma również podobne właściwości, jak gdyby laser pracował w warunkach klasycznych” – tłumaczy dr inż. Maciej Pieczarka. I dodaje, że w tym przypadku mechanizm działania jest całkowicie inny.
Dodatkowo naukowcy z Politechniki Wrocławskiej zbadali właściwości termodynamiczne gazu fotonowego.
“Zweryfikowaliśmy, że fotony w naszym laserze zachowują się dokładnie tak, jak podręcznikowy gaz bozonów z dobrze określoną temperaturą” – mówi Aleksandra Piasecka. Precyzuje, że zmierzono parametry tzw. równania stanu gazu, potwierdzając zgodność z fundamentalną teorią.
JAKIE TO MA ZNACZENIE?
Dr inż. Maciej Pieczarka wyjaśnia, że nikt nie wie jeszcze dokładnie, jakie właściwości będą mieć lasery pracujące w takim trybie, bo to całkowicie nowa dziedzina nauki. Taki tryb działania lasera ma także - zdaniem badaczy - ogromny potencjał aplikacyjny.
Sprzęt w laboratorium laserowym. Źródło: Politechnika Wrocławska
Lasery VCSEL o dużej aperturze aktywnej (laser z PWr miał aperturę 23 mikrometrów) są znane z tego, że emitują wielomodowo, więc laserują światłem w kilku różniących się od siebie długościach fal na raz, co ogranicza ich właściwości, np. stabilność emisji. Jest to dobrze znane ograniczenie laserów VCSEL dużych rozmiarów.
“Nasz laser, w kontraście do obecnego stanu wiedzy, skondensował, a nie laserował, do pojedynczej długości fali, rozwiązując ten problem technologiczny” – precyzuje badacz.
Optymalizacja laserów operujących w trybie kondensacji Bosego-Einsteina może pozwolić na uzyskanie o wiele lepszych parametrów wiązki, koherencji i stabilności takich laserów. Takie właściwości laserów dużej powierzchni są kluczowe, m.in. w systemach typu LiDAR używanych w autonomicznych samochodach.
Ich publikacja „Bose-Einstein condensation of photons in a vertical-cavity surface-emitting laser” („Kondensacja Bosego-Einsteina fotonów w laserze z pionową wnęką rezonansową z emisją powierzchniową”) powstała we współpracy z członkami Zespołu Fotoniki Instytutu Fizyki Politechniki Łódzkiej: prof. Tomaszem Czyszanowskim, dr. Marcinem Gębskim i dr. hab. Michałem Wasiakiem. Z kolei wsparcia teoretycznego naukowcom z Politechniki Wrocławskiej udzielił prof. Axel Pelster z RPTU Kaiserslautern.
Jeszcze przed wysłaniem swojego artykułu do publikacji dr Maciej Pieczarka spotkał dr. Rossa Schofielda z grupy prof. Ruperta Oultona Imperial College z Londynu, który prezentował tożsame wyniki uzyskane w tym samym czasie, ale w trochę innym układzie laserowym o otwartej wnęce.
Zbliżenie na pojedyncze lasery pod mikroskopem. Fot. Politechnika Wrocławska
Obie grupy postanowiły nie ścigać się i nie konkurować, kto pierwszy opublikuje swoje wyniki, tylko współpracować i w tym samym czasie wysłać je do recenzji. Artykuły równocześnie opublikowano w Nature Photonics. Odkrycie to zostało więc potwierdzone przez dwie niezależne grupy, których prace pokazują różne aspekty tego samego efektu.
Więcej na ten temat na stronie uczelni. (PAP)
Nauka w Polsce
lt/ bar/
Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.