Nauka dla Społeczeństwa

04.05.2024
PL EN
21.01.2024 aktualizacja 21.01.2024

Przezroczysty implant zagląda do wnętrza mózgu

Fot. Adobe Stock Fot. Adobe Stock

Powstał cienki, przezroczysty, elastyczny implant, który umieszczony na powierzchni mózgu odczytuje informacje o pracy komórek w głębszych warstwach. Kluczem było wykorzystanie grafenu i sztucznej inteligencji.

Naukowcy z University of California, San Diego (USA) opisali właśnie duży krok w kierunku implantów łączących mózg z komputerem, umożliwiających prowadzenie minimalnie inwazyjnych badań aktywności neuronalnej w mózgu. Stworzyli cienki, przezroczysty i giętki implant, który po umieszczeniu na powierzchni mózgu pozwala podglądać działanie komórek mieszczących się głębiej.

Takie narzędzie może znacząco przyspieszyć rozwój medycyny i neurobiologii. Dzięki wszczepowi można będzie np. badać, jak ukrwienie mózgu wpływa na jego aktywność elektryczną, czy jak pewne komórki tworzą ślady pamięciowe.

„Z pomocą tej technologii rozszerzamy zakres, w którym można rejestrować działanie neuronów. Choć nasz implant umieszcza się na powierzchni mózgu, jego możliwości wykraczają poza rejestrowanie bezpośrednich fizycznych oddziaływań i może on zbierać informacje o neuronalnej aktywności w głębszych warstwach” – mówi prof. Duygu Kuzum, autor publikacji, która ukazała się w piśmie „Nature Nanotechnology”.

Dotąd możliwe było albo obserwowanie neuronów na powierzchni z pomocą minimalnie inwazyjnych implantów, albo badanie głębszych warstw mózgu z pomocą wprowadzanych od niego igieł.

Badania na myszach potwierdziły, że implant może działać na dwa sposoby. Po pierwsze za pomocą umieszczonych w nim elektrod mierzył aktywność elektryczną neuronów na powierzchni mózgu. W tym samym czasie badacze przez przezroczysty wszczep oświetlali laserem głębsze warstwy, co pozwoliło zaobserwować aktywność jonów wapnia w obecnych tam komórkach. Ruch tych jonów może wiele powiedzieć o działaniu komórek nerwowych.

Informacje uzyskane z różnych warstw badacze wprowadzili następnie do systemu sztucznej inteligencji, który nauczył się dokładnie przewidywać aktywność komórek w głębszych warstwach, na podstawie danych o samej aktywności warstwy powierzchniowej. Dzięki temu można więc już badać tylko warstwę powierzchniową, aby uzyskać wiedzę o tym, co dzieje się także głębiej.

Kluczem do sukcesu były przede wszystkim dwa elementy: grafen, który umożliwił stworzenie ultra-cienkich, przezroczystych elektrod, a także SI, która nauczyła się dedukować działanie głębiej położonych neuronów.

„Integracja sygnałów elektrycznych i optycznego obrazowania aktywności neuronalnej wykonalna jest wyłącznie dzięki tej technologii. Prowadzenie obu eksperymentów jednocześnie dostarcza nam bardziej adekwatnych danych, ponieważ możemy obserwować, w jaki sposób eksperymenty obrazowe są czasowo powiązane z rejestrowaniem sygnałów elektrycznych” – wyjaśnia prof. Kuzum.

W dalszych etapach naukowcy chcą testować swoją technologię na innych gatunkach zwierząt, z ostatecznym celem sprawdzenia jej na ludziach.

„Technologia ta może być wykorzystana naprawdę w wielu podstawowych badaniach z dziedziny neuronauki. Z entuzjazmem chcemy wykonać naszą część pracy, aby przyspieszyć postępy w lepszym zrozumieniu ludzkiego mózgu” – podkreśla specjalista.(PAP)

Marek Matacz

mat/ bar/

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

Copyright © Fundacja PAP 2024