IFJ PAN: kreacja bez kontaktu w zderzeniach jąder ołowiu i złota

W trakcie bliskich centralnym zderzeń jąder ołowiu w LHC dochodzi do powstania plazmy kwarkowo-gluonowej i koktajlu wielu wkładów z innymi cząstkami. Jednocześnie zderzają się chmury fotonów otaczających jądra, co skutkuje kreacjami par lepton-antylepton w obrębie plazmy i koktajlu oraz w przestrzeni wokół jąder. (Źródło: IFJ PAN)
W trakcie bliskich centralnym zderzeń jąder ołowiu w LHC dochodzi do powstania plazmy kwarkowo-gluonowej i koktajlu wielu wkładów z innymi cząstkami. Jednocześnie zderzają się chmury fotonów otaczających jądra, co skutkuje kreacjami par lepton-antylepton w obrębie plazmy i koktajlu oraz w przestrzeni wokół jąder. (Źródło: IFJ PAN)

Gdy rozpędzone niemal do prędkości światła jony ołowiu lub złota wpadną na siebie w czeluściach akceleratorów, na ułamki sekund tworzy się plazma kwarkowo-gluonowa, a nawet jej „koktajl” doprawiony innymi cząstkami. Zdaniem naukowców z IFJ PAN dane eksperymentalne wskazują, że na arenie wydarzeń są obecni jeszcze inni aktorzy: fotony. Ich zderzenia prowadzą do emisji pozornie nadmiarowych cząstek, których obecności nie potrafiono wyjaśnić.

Plazma kwarkowo-gluonowa to bezsprzecznie najbardziej egzotyczny ze znanych nam stanów materii. W akceleratorze LHC w CERN pod Genewą tworzy się ona podczas centralnych zderzeń dwóch nadlatujących z naprzeciwka jonów ołowiu, poruszających się z prędkościami bardzo bliskimi prędkości światła - przypomina w prasowym komunikacie Instytut Fizyki Jądrowej PAN w Krakowie.

Kwarkowo-gluonowa zupa bywa też doprawiona innymi cząstkami. Niestety, opis teoretyczny przebiegu wydarzeń z udziałem plazmy oraz jej koktajlu nie w pełni odpowiadał danym zebranym w eksperymentach. W artykule opublikowanym na łamach czasopisma „Physics Letters B” grupa naukowców z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie wyjaśniła przyczynę zaobserwowanych rozbieżności.

Dane zebrane w trakcie zderzeń jąder ołowiu w akceleratorze LHC, a także podczas zderzeń jąder złota w akceleratorze RHIC w Brookhaven National Laboratory koło Nowego Jorku, zaczynają się zgadzać z teorią, gdy w opisie zachodzących procesów uwzględni się zderzenia między fotonami otaczającymi oba oddziałujące ze sobą jony - piszą specjaliści IFJ PAN.

„Z pewnym przymrużeniem oka można powiedzieć, że przy odpowiednio wielkich energiach masywne jony zderzają się nie tylko swoimi protonami i neutronami, ale nawet swoimi chmurami fotonów” - mówi dr Mariola Kłusek-Gawenda (IFJ PAN) cytowana w prasowym komunikacie i od razu precyzuje: „Przy opisie kolizji jonów w LHC już wcześniej uwzględnialiśmy zderzenia między fotonami. Dotyczyły one jednak tylko zderzeń ultraperyferyjnych, w których jony nie trafiają w siebie, lecz mijają się niezmienione, oddziałując wyłącznie własnymi polami elektromagnetycznymi. Nikt nie przypuszczał, że zderzenia fotonów mogą odgrywać jakąkolwiek rolę w brutalnych interakcjach, gdzie protony i neutrony dosłownie zlewają się w kwarkowo-gluonową zupę”.

W warunkach znanych z codziennego życia fotony nie zderzają się ze sobą - czytamy w prasowym komunikacie. Gdy jednak mamy do czynienia z masywnymi jonami rozpędzonymi niemal do prędkości światła, sytuacja staje się inna. Jądro złota zawiera 79 protonów, jądro ołowiu aż 82, ładunek elektryczny każdego jonu jest więc odpowiednio wiele razy większy od ładunku elementarnego. Nośnikami oddziaływań elektromagnetycznych są fotony, zatem każdy jon można traktować jako obiekt otoczony chmurą wielu fotonów. Co więcej, w akceleratorach RHIC i LHC jony poruszają się z prędkościami bliskimi prędkości światła. W rezultacie i one, i otaczająca je chmura fotonów, z punktu widzenia obserwatora w laboratorium sprawiają wrażenie niezwykle cienkich placków, spłaszczonych w kierunku ruchu. Z każdym przelotem takiego protonowo-neutronowego naleśnika wiąże się wyjątkowo gwałtowna oscylacja pól elektrycznego i magnetycznego.

W elektrodynamice kwantowej, teorii używanej do opisu elektromagnetyzmu z uwzględnieniem zjawisk kwantowych, istnieje maksymalna wartość krytyczna pola elektrycznego, rzędu dziesięć do szesnastej woltów na centymetr. Dotyczy ona statycznych pól elektrycznych. W przypadku zderzeń masywnych jąder atomowych w RHIC czy LHC mamy do czynienia z polami dynamicznymi, pojawiającymi się na zaledwie milionowe części jednej miliardowej jednej miliardowej sekundy. Przez tak ekstremalnie krótki czas pola elektryczne w zderzeniach jonów mogą być nawet stukrotnie silniejsze od wartości krytycznej - podaje IFJ PAN.

„W istocie pola elektryczne jonów zderzających się w LHC bądź RHIC są tak potężne, że pod ich wpływem powstają wirtualne fotony i dochodzi do ich zderzeń. W wyniku tych procesów w różnych punktach wokół jonów, gdzie wcześniej nie było niczego materialnego, powstają pary lepton-antylepton. Cząstki każdej pary rozbiegają się w charakterystyczny sposób: typowo w przeciwnych kierunkach i niemal prostopadle do pierwotnego kierunku ruchu jonów” - wyjaśnia dr hab. Wolfgang Schäfer (IFJ PAN) i przypomina, że do rodziny leptonów są zaliczane elektrony oraz ich bardziej masywne odpowiedniki: miony i taony.

Interakcje fotonów i związana z nimi produkcja par lepton-antylepton są kluczowe w zderzeniach peryferyjnych. Kolizje tego typu krakowscy fizycy opisali już kilka lat wcześniej. Ku własnemu zaskoczeniu, teraz udało się im wykazać, że te same zjawiska odgrywają niemałą rolę również w bezpośrednich zderzeniach jąder, nawet centralnych. Z danych zebranych dla jąder złota w RHIC i jąder ołowiu w LHC wynika bowiem, że podczas takich zderzeń pojawia się pewna „nadmiarowa” liczba par elektron-pozyton, które stosunkowo wolno rozbiegają się w kierunkach niemal prostopadłych do wiązek jonów. Ich istnienie udało się wyjaśnić właśnie poprzez uwzględnienie produkcji par lepton-antylepton przez zderzające się fotony.

„Prawdziwą wisienką na torcie okazał się dla nas fakt, że uzupełniając dotychczasowe narzędzia opisu zderzeń masywnych jonów o nasz formalizm zbudowany na tak zwanych funkcjach Wignera mogliśmy wreszcie wytłumaczyć, dlaczego detektory największych współczesnych eksperymentów akceleratorowych rejestrują takie a nie inne rozkłady leptonów i antyleptonów uciekających z miejsca kolizji jąder (dla ustalonej centralności zderzenia). Nasze rozumienie najważniejszych zachodzących tu procesów stało się bardziej kompletne” - podsumowuje prof. dr hab. Antoni Szczurek (IFJ PAN), cytowany w prasowym komunikacie.

Prace nad krakowskim modelem zderzeń foton-foton sfinansowano ze środków Narodowego Centrum Nauki. Model wzbudził zainteresowanie fizyków pracujących przy detektorach ATLAS i ALICE akceleratora LHC i zostanie użyty już w najbliższych analizach danych eksperymentalnych.

PAP - Nauka w Polsce

ekr/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • Typowy dołek kriokonitowy. (Źródło: IFJ PAN)

    Radioaktywny pluton się nie ukryje. Naukowcy znajdują go nawet na lodowcach

  • W reakcji biorą udział występujący w naturze wodorosiarczek (HS-) oraz związek organiczny, zawierający pierścienie aromatyczne, zdolny do absorpcji promieniowania UV. Pod wpływem energii promieniowania UV następuje ultraszybki transfer elektronu z wodorosiarczku do związku organicznego, co prowadzi do dalszych selektywnych transformacji chemicznych. Fot. materiały prasowe

    Polacy opisali nowy typ reakcji chemicznej przy tworzeniu cegiełek DNA

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera