Wiązania wodorowe pomagają w przenoszeniu elektronów

Zaprojektowana przez zespół cząsteczka, w której po raz pierwszy zaobserwowano przeniesienie elektronów dalekiego zasięgu (zielona linia) poprzez wiązania wodorowe (czerwone przerywane linie). Nie zachodzi tu znane już wcześniej tzw. przeskakiwanie (hopping) Źródło: R. Orłowski et al., PNAS 2021
Zaprojektowana przez zespół cząsteczka, w której po raz pierwszy zaobserwowano przeniesienie elektronów dalekiego zasięgu (zielona linia) poprzez wiązania wodorowe (czerwone przerywane linie). Nie zachodzi tu znane już wcześniej tzw. przeskakiwanie (hopping) Źródło: R. Orłowski et al., PNAS 2021

Międzynarodowy zespół kierowany przez Polaka zaobserwował po raz pierwszy, że przeniesienie elektronów dalekiego zasięgu w obrębie cząsteczki chemicznej, może zachodzić poprzez wiązania wodorowe bez tzw. przeskakiwania (ang. hopping). Odkrycie to opublikowane w PNAS może nie tylko pomóc lepiej zrozumieć pracę białek, ale i projektować nowe materiały.

Aby istniało życie, konieczne są procesy przekazywania energii i elektronów w ramach cząsteczek chemicznych i pomiędzy nimi. Podczas przeniesienia elektronów - a więc cząstek niosących ujemny ładunek elektryczny – przeskakują one z jednego miejsca w cząsteczce chemicznej w inne. Przeniesienie elektronów to choćby podstawa fotosyntezy, w której foton - cząstka światła - wzbudza cząsteczkę chlorofilu i wybija z niej elektron, który ucieka wtedy w inne miejsce. Zgromadzona w tym procesie energia w finale napędza pracę komórki. Proces przeniesienia elektronu jest też niezbędny do reperacji uszkodzonego DNA czy do pracy niektórych enzymów. Ma też jednak znaczenie w inżynierii - choćby w budowie ogniw fotowoltaicznych i technologiach fotonicznych.

Chemicy od dawna wiedzieli, że elektron może przeskakiwać na niewielkie odległości. Były też już jednak znane procesy przeskakiwania (ang. hopping) elektronów na większą odległość (to tzw. przeniesienie elektronów dalekiego zasięgu – ang. long-range electron transfer). Dotąd obserwowano tylko takie sytuacje, w których elektron skakał na sporą odległość, ale pod warunkiem, że miał na swojej drodze "schodki", miejsca w cząsteczce, po których mógł po drodze kolejno przeskakiwać, aby w rezultacie przebyć dłuższą trasę.

Teraz zespół naukowców pod kierunkiem prof. Daniela Gryko z Instytutu Chemii Organicznej PAN pokazał nowy sposób takiego przenoszenia elektronów poprzez tunelowanie (ang. tunneling) – tzn. bez tradycyjnych "schodków".

"W naszych badaniach po raz pierwszy udało się udowodnić, że proces przeniesienia elektronów może zachodzić pomiędzy przeciwległymi i położonymi daleko od siebie fragmentami, pod warunkiem, że w cząsteczce istnieje sieć wewnętrznych wiązań wodorowych" - streszcza w rozmowie z PAP prof. Daniel Gryko. To kierownik zespołu, którego badania ukazały się w prestiżowym czasopiśmie PNAS.

W badaniach brali udział badacze z IChO PAN: Rafał Orłowski (pierwszy autor pracy), prof. Agnieszka Szumna i dr Olga Staszewska-Krajewska, ale również badacze z Kalifornii (zespoły kierowane przez prof. Harrego Graya oraz przez prof. Valentine Vulleva) .

Pokazanie tego procesu było bardzo trudne - naukowcy musieli zaprojektować i wytworzyć cząsteczkę, w której dojdzie do takiego przeniesienia elektronów. Badania zajęły im trzy lata, ale trud ten się opłacił. W cząsteczce tej elektron przenosił się z jednego końca cząsteczki na drugi, chociaż byłoby to niemożliwe gdyby kształt cząsteczki był liniowy.

Kluczowe jest to, że cząsteczka zaprojektowana przez naukowców nie była liniowa ale raczej zawinięta w kształt skorpiona. Molekuła ta składająca się z kilku aminokwasów posiada w swojej budowie część bogatą w elektrony (donor), oraz ubogą w elektrony (akceptor). Elektrony z jednego końca cząsteczki miały więc "ochotę" dostać się na drugi jej koniec, ale podróż ładunku wzdłuż całej cząsteczki nie była możliwa. Jedyne, co się mogło tam zadziać, to skok elektronu z "głowy" skorpiona na jego "ogon". Badacze pokazali, że jest to możliwe - dzięki temu, że podczas skoku elektron mógł skorzystać z obecności wewnątrzcząsteczkowych wiązań wodorowych, które się znalazły na jego trasie - a więc sił, które spinały ogon i głowę skorpiona. Nowatorskim pomysłem było takie dobranie donora i akceptora aby tworzyły wiązania wodorowe.

"Spodziewamy się, że inne zespoły wykorzystają ten model i naszą wiedzę, by zaprojektować swoje cząsteczki do innych celów - nie tylko chodzi o biologię molekularną, ale i o chemię materiałową" - mówi prof. Gryko. Ma nadzieję, że nowa wiedza o przenoszeniu elektronów w cząsteczkach pomoże nie tylko lepiej zrozumieć działanie białek, ale również pomoże w opracowaniu nowych rozwiązań szczególnie powiązanych z ogniwami słonecznymi.

"W naszych badaniach pokazujemy, że krótkie peptydy, zawierające zaledwie cztery reszty aminokwasowe, zapewniają sieć wiązań wodorowych, która może pośredniczyć w przenoszeniu elektronów z niezwykle wysoką wydajnością. Praca ta nie tylko zmienia spojrzenie na projektowanie cząsteczek, w których zachodzi przeniesienie elektronu, ale także sugeruje motywy strukturalne pośredniczące w transmisji elektronów w białkach" - podsumowuje prof. Gryko.

PAP - Nauka w Polsce, Ludwika Tomala

lt/ agt/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • Typowy dołek kriokonitowy. (Źródło: IFJ PAN)

    Radioaktywny pluton się nie ukryje. Naukowcy znajdują go nawet na lodowcach

  • W reakcji biorą udział występujący w naturze wodorosiarczek (HS-) oraz związek organiczny, zawierający pierścienie aromatyczne, zdolny do absorpcji promieniowania UV. Pod wpływem energii promieniowania UV następuje ultraszybki transfer elektronu z wodorosiarczku do związku organicznego, co prowadzi do dalszych selektywnych transformacji chemicznych. Fot. materiały prasowe

    Polacy opisali nowy typ reakcji chemicznej przy tworzeniu cegiełek DNA

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera