Pióra pingwinów i sierść niedźwiedzi inspiracją w pracach nad nowymi włóknami izolującymi

Pióra pingwinów i sierść niedźwiedzi chroni zwierzęta przed utratą ciepła. Prof. Urszula Stachewicz chce - bazując na znajomości budowy tych  struktur - opracować nowe materiały izolacyjne. Fot: Christopher Michel / CC BY; Jerzy Strzelecki / CC BY-SA
Pióra pingwinów i sierść niedźwiedzi chroni zwierzęta przed utratą ciepła. Prof. Urszula Stachewicz chce - bazując na znajomości budowy tych struktur - opracować nowe materiały izolacyjne. Fot: Christopher Michel / CC BY; Jerzy Strzelecki / CC BY-SA

Pióra pingwinów czy sierść niedźwiedzi polarnych to materiały biodegradowalne, lekkie, mające świetne właściwości izolacyjne. Dla laureatki grantu ERC, prof. Urszuli Stachewicz są one inspiracją dla tworzenia nowych materiałów, które pozwolą skuteczniej chronić elektronikę czy budynki przed utratą energii.

Pingwiny żyją na Antarktydzie, a niedźwiedzie polarne - w Arktyce. "Mają więc szanse spotkać się ze sobą tylko w zoo" - śmieje się w rozmowie z PAP dr hab. Urszula Stachewicz, profesor z AGH. Mimo to gatunki te coś ze sobą łączy - sporą część swojego życia spędzają na śniegu, a w dodatku są świetnymi pływakami - mogą nurkować w lodowatej wodzie. Co sprawia, że nie marzną?

Zespół prof. Stachewicz z Centrum Mikroskopii Elektronowej AGH postanowił w nanometrowej skali zbadać, jak zbudowane są pióra pingwinów i sierść niedźwiedzi polarnych. I okazało się, że zwierzęta te wytworzyły w miarę podobne sposoby ochrony przed mrozem. "Zarówno pióro, jak i włos niedźwiedzia polarnego - w których skład wchodzi keratyna - są porowate w środku. Wykształciła się tam podobna geometria, która daje tym strukturom świetne właściwości izolacyjne" - mówi badaczka.

Pióra pingwinów i sierść niedźwiedzi chroni zwierzęta przed utratą ciepła. Prof. Urszula Stachewicz chce - bazując na znajomości budowy tych  struktur - opracować nowe materiały izolacyjne. Fot: Christopher Michel / CC BY; Jerzy Strzelecki / CC BY-SA

Fot: Christopher Michel / CC BY; Jerzy Strzelecki / CC BY-SA

Tłumaczy, że znaczenie ma ukierunkowanie włókien, a także wielkość i struktura porów - maleńkich, niewidocznych gołym okiem otworów.

"Próbujemy zrozumieć geometrię i budowę struktur we wnętrzu piór i włosów, a dzięki temu samemu stworzyć materiały polimerowe o podobnych własnościach. Naśladujemy to, czego natura szukała od bardzo dawna" - mówi prof. Stachewicz.

Na przeprowadzenie tych badań naukowiec otrzymała prestiżowy Starting Grant przyznawany przez Europejską Radę ds. Badań Naukowych (ERC). Dzięki środkom tym będzie mogła przez pięć lat zatrudnić zespół 10 osób, które pomogą jej w pracach badawczych.

Grant dotyczy prac nad nowymi elektroprzędzonymi włóknami polimerowymi. W ramach projektu mają powstać różne warianty membran, które - jak liczy prof. Stachewicz - będzie można dopasować czy to do efektywniejszego chłodzenia, czy to ogrzewania, czy do wprowadzenia oszczędności w zużyciu energii.

wnetrze piora pingwina

Wnętrze pióra pingwina. Źródło: Urszula Stachewicz, AGH 

Wyjaśnia, że materiały o takich właściwościach mogłyby się przydać np. do termicznej izolacji budynków, osłony kabli, czy urządzeń, aby nie przedostawało się tamtędy ciepło. "To się też może przydać w produkcji inteligentnych materiałów czy tekstyliów" - dodaje laureata grantu ERC.

Prof. Stachewicz ma też nadzieję, że uda się jej wytwarzać membrany, które będą odbierać ciepło z urządzeń i pozwolą odzyskiwać potem tę energię. I tak np. w komputerze dużo energii zużywa wiatrak. A jeśli ciepło z procesora odbierałby polimer, a potem energię z tego materiału dałoby się odzyskać i ponownie wykorzystać - można byłoby osiągnąć spore oszczędności w zużyciu energii - uważa prof. Stachewicz. Podaje przykład serwerowni czy superkomputerów, które zużywają ogromną ilość energii na samo chłodzenie urządzeń. Jej zdaniem dzięki wykorzystaniu nowoczesnych materiałów można byłoby ograniczyć takie straty energii.

wnetrze wlosa niedzwiedzia polarnego

Wnętrze włosa niedźwiedzia polarnego. Źródło: Urszula Stachewicz, AGH 

"Włókna polimerowe, nad którymi pracuję, to membrany, które z wyglądu trochę kojarzyć się mogą z chusteczką higieniczną. Ich porowatość jest jednak znacznie większa - sięga 90 proc." - mówi. Każde z włókien, na które składa się membrana, ma rozmiary poniżej 1 mikrona (jest ok. sto razy cieńszy niż włos ludzki). Pory w tych membranach są tak małe, że nie widać ich gołym okiem, jednak jest ich tak dużo, że powietrze - świetny izolator - stanowi aż 90 proc. objętości materiału. A to dodatkowo oznacza, że struktura taka jest wyjątkowo lekka.

Polimery wytwarzane mają być ze znanych na rynku i dostępnych już biodegradowalnych polimerów. A to oznacza, że rozłożą się w środowisku.

elektroprzedzone nanowlokna z nylonu 6 (1)

Elektroprzędzone nanowłókna z nylonu 6.  Źródło: Urszula Stachewicz, AGH 

Badaczka tłumaczy, że w ramach projektu jej zespół będzie opracowywał nowe elektroprzędzone włókna. Jak powstają takie struktury? Najpierw przygotowuje się lepki roztwór polimeru, przykłada napięcie elektryczne, a strumień polimeru wyciągany jest przez dyszę. Rozpuszczalniki wtedy odparowują, a ze strumienia polimerów powstaje membrana - siatka nieuporządkowanych włókien.

Projekt ma ruszyć w styczniu. "Na razie przebadaliśmy strukturę piór pingwinów i niedźwiedzi, żeby zobaczyć, jak wygląda zoptymalizowana struktura izolująca. A teraz trzeba zacząć gromadzić sprzęt i ludzi, aby opracować membrany, które będą te naturalne struktury naśladować" - tłumaczy prof. Stachewicz. 

PAP - Nauka w Polsce,  Ludwika Tomala

lt/ ekr/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • Źródło: ESA - P. Carril, 2013

    Dr Marek Stęślicki: misja Proba-3 posłuży badaniu środkowej korony słonecznej

  • Fot. Adobe Stock

    Dr Mamak: przy robotach prawo karne staje się "lewe"

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera