Prof. Meissner: dzięki pracy noblistów z fizyki możemy śledzić działanie enzymów i hormonów

Na zdjęciu prof. Krzysztof Meissner z Uniwersytetu Warszawskiego. Źródło: CWiD UW
Na zdjęciu prof. Krzysztof Meissner z Uniwersytetu Warszawskiego. Źródło: CWiD UW

Dzięki pracy noblistów z fizyki Pierre'a Agostiniego, Ferenca Krausza i Anne L’Huillier możemy śledzić działanie enzymów i hormonów. Ma to związek np. z precyzyjnym podawaniem leków – powiedział PAP prof. Krzysztof Meissner, fizyk teoretyk z Uniwersytetu Warszawskiego.

Badania trójki tegorocznych noblistów z fizyki - Pierre'a Agostiniego, Ferenca Krausza i Anne L’Huillier - pozwoliły generować optyczne impulsy attosekundowe, czyli najkrótsze wydarzenia wytwarzane i kontrolowane przez człowieka. Podarowali ludzkości narzędzia do badania świata elektronów wewnątrz atomów - podkreślił we wtorek Komitet Noblowski w uzasadnieniu swojej decyzji.

W rozmowie z PAP prof. Krzysztof Meissner, fizyk teoretyk z Uniwersytetu Warszawskiego podkreślił, jak istotna jest możliwość zobaczenia na poziomie molekularnym tego, jak konkretne cząsteczki łączą się ze sobą, i ile czasu im to zajmuje.

Na zdjęciu prof. Krzysztof Meissner z Uniwersytetu Warszawskiego i red. Urszula Kaczorowska. Źródło: CWiD UW
Na zdjęciu prof. Krzysztof Meissner z Uniwersytetu Warszawskiego i red. Urszula Kaczorowska. Źródło: CWiD UW

"Dobrze jest eksperymentalnie zobaczyć, ile czasu zajmuje łączenie się cząsteczek, i jak to faktycznie wygląda na poziomie molekularnym. To jest potrzebne m.in. do śledzenia działania enzymów i hormonów. Ma też związek np. z podawaniem leków. Jeśli będziemy dokładnie wiedzieli, w którym miejscu dany lek ma swój 'słaby punkt' przy łączeniu się cząsteczek, wówczas można wprowadzić zmianę. Dla przykładu jeśli grupie metylowej zbyt dużo czasu zajmuje połączenie się z inną cząsteczką, można ją wymienić na inną i przyspieszyć ten proces. W ten sposób przyspieszy się też reakcja organizmu" – wyjaśnił Meissner.

Podał też przykład związany z koronawirusem.

"Dobrze jest wiedzieć, w jakich warunkach wirus przenika przez błonę komórkową szybciej, a w jakich przenika wolniej. Dobrym przykładem jest białko kolca koronawirusa – naukowcy mogą zobaczyć, w jaki sposób on 'rozpina' błonę komórkową i wnika do komórki. Dzięki temu możliwe jest podejmowanie próby modyfikacji tego kolca, aby spowolnić cały proces. W ten sposób komórka będzie miała więcej czasu na reakcję i wytworzy odpowiedź immunologiczną. Na poziomie molekularnym i elektronowym to są niezwykle trudne procesy. Dzięki osiągnięciu tegorocznych noblistów naukowcy mogą się im przyglądać" – powiedział Meissner.

Przewodnicząca Komitetu Noblowskiego Eva Olsson powiedziała, że odkrycie noblistów "otworzyło drzwi do świata elektronów".

 EPA/ANDERS WIKLUND  3.10.2023
 EPA/ANDERS WIKLUND  3.10.2023

Prof. Meissner doprecyzował, że chodzi o "skomplikowane cząsteczki".

"Wiedzieliśmy, jak zachowuje się elektron, który krąży wokół jądra, ale mało wiedzieliśmy o skomplikowanych cząsteczkach. Dzięki odkryciu noblistów dowiedzieliśmy się, co się dzieje w momencie, kiedy jedna duża cząsteczka, typu enzym, łączy się drugą, dużą cząsteczką – jak to wygląda krok po kroku, zdjęcie po zdjęciu, klatka po klatce” – podsumował Meissner.

Nauka w Polsce, Urszula Kaczorowska

uka/ zan/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • Elektrodepozycja filmu nanocząstek PtNi przy użyciu techniki in-situ w komórce przepływowej w transmisyjnym mikroskopie elektronowym podczas cyklicznej woltametrii. Wiązka elektronów (tu oznaczona na zielono) oświetla elektrodę (oznaczoną na pomarańczowo), zanurzoną w roztworze soli platyny i niklu, umożliwiając obrazowanie wzrostu nanocząstek PtNi (kolor szary) na elektrodzie. Grubość filmu wzrasta z każdym cyklem i po czwartym cyklu zaobserwowano wzrost rozgałęzionych i porowatych struktur. Projekt okładki/ilustracji: Weronika Wojtowicz, tło z wodą pobrane z https://pl.freepik.com

    Narodziny nanostruktury na filmie. Ujawniono sekrety elektrodepozycji

  • Fizyk, profesor nadzwyczajny naukowy Konrad Banaszek (amb) PAP/Marcin Obara

    Fizyk: gra o technologie kwantowe już się toczy. Wykorzystamy szansę, czy ją stracimy?

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera