Naukowcy wykazali, że czasem im cieńszy nanomateriał, tym bardziej miękki

Źródło: ICN2 Barceloona
Źródło: ICN2 Barceloona

Na przykładzie grafenu powszechnie uznaje się, że im mniej warstw atomowych, tym materiał twardszy i wytrzymalszy. Badacze z Polski i Hiszpanii udowodnili, że nie jest to regułą, a niektóre nanomateriały w miarę zmniejszania grubości stają się bardziej miękkie. To zaleta przy projektowaniu elastycznej elektroniki - mówią.

Badaniami kierował dr hab. Bartłomiej Graczykowski, prof. Uniwersytetu im. Adama Mickiewicza w Poznaniu, który jest również stypendystą Fundacji na rzecz Nauki Polskiej.

Badając wytrzymałość mechaniczną materiałów w skali nano naukowcy pod lupę wzięli diselenek molibdenu (MoSe2) – jeden z tzw. materiałów van der Waalsa, które stosunkowo łatwo jest odwarstwiawiać i dojść do grubości rzędu kilku nanometrów (jeden nanometr to jedna miliardowa metra, czyli jedna milionowa milimetra).

„Powszechnie uznaje się - w oparciu o przykład grafenu, że twardość i wytrzymałość materiałów zbudowanych z zaledwie jednej lub kilku warstw atomowych przewyższa parametry ich pełnowymiarowych odpowiedników. Nasze badania pokazały jednak, że nie zawsze można spodziewać się wzmocnienia pewnych właściwości w skali nano. Wykazaliśmy, że w miarę stopniowego zmniejszania grubości diselenku molibdenu (do zaledwie trzech warstw molekularnych), stawał się on coraz bardziej miękki” – wyjaśnił fizyk.

Dodał, że podczas przejścia od materiału objętościowego do materiału o grubości trzech warstw molekularnych badany materiał zmiękł o około 30 proc. „Dotychczasowe badania teoretyczne nie dają jednoznacznych wyników co do tego zjawiska, dlatego jest to rozwojowa ścieżka i musimy zbadać również inne materiały van der Waalsa” – wskazał.

Jak mówił fizyk, metoda pomiarowa, którą naukowcy zastosowali do badania próbek materiału o stopniowo zmniejszanych wymiarach, jest znana od ponad stu lat. Nie była dotąd stosowana do takich badań.

„Jest to metoda całkowicie bezkontaktowa, która mierzy termiczne fale akustyczne w materiale (o częstotliwościach gigahercowych) i pozwala na wydobycie jego właściwości mechanicznych. Obecnie tylko my potrafimy stosować tę technikę do badań membran o grubości kilku nanometrów. A jest ona bardziej niezawodna i bardziej przydatna niż tradycyjne metody kontaktowe, ponieważ może dostarczyć zarówno informacji na temat właściwości mechanicznych, jak i danych o grubości membran” – twierdzi dr hab. Graczykowski.

Jednak to, że materiał w skali nano staje się bardziej miękki nie zawsze jest problemem – uważa badacz. „Miękki materiał wprawdzie ma mniejszą wytrzymałość na rozerwanie, ale z drugiej strony jest bardziej giętki, co jest zaletą przy projektowaniu elastycznej elektroniki, która już wkrótce może zastąpić elektronikę opartą na krzemie” – ocenił.

Nanomateriały, takie jak np. diselenek molibdenu, mogą bowiem w przyszłości zastąpić krzem – podstawowy obecnie materiał do wytwarzania elektroniki.

„Poszukiwanie nanomateriału, który może być aletrnatywą dla krzemu to badanie przede wszystkim właściwości elektrycznych, a także cieplnych i mechanicznych. Z jednej strony wyznacznikiem jest tutaj duża wytrzymałość mechaniczna, z drugiej jednak zależy nam na skończonym czasie życia i prostym recyklingu takiego materiału. Nauka o nanomateriałach się prężnie rozwija, ale to wciąż głównie etap badań podstawowych” – podsumował dr hab. Graczykowski.

Badania pod kierunkiem dra hab. Graczykowskiego prowadzone są na Uniwersytecie Adama Mickiewicza (UAM) w Poznaniu oraz w Katalońskim Instytucie Nanonauki i Nanotechnologii (ICN2) w Barcelonie w Hiszpanii. Wyniki zostały opublikowane w czasopiśmie "Advanced Materials". (PAP)

Agnieszka Kliks-Pudlik

akp/ zan

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • 20.11.2024. Siedziba Akademickiego Centrum Komputerowego CYFRONET AGH w Krakowie, 20 bm. Minister cyfryzacji wziął udział w konferencji prasowej nt. wsparcia budowy pierwszej w Polsce Fabryki Sztucznej Inteligencji, która ma powstać w ACK Cyfronet.  PAP/Łukasz Gągulski

    Gawkowski: Fabryka AI da szansę na bycie liderem cyfryzacji w Europie

  • dr Tomasz Włodarski z Instytutu Biochemii i Biofizyki PAN. Fot. archiwum własne.

    Ekspert: AlphaFold nie zabierze pracy biologom

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera